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A B S T R A C T

The present study was developed in a joint partnership with the Brazilian pedometrics community to standardize
and evaluate spectra within the 350–2500 nm range of Brazilian soils. The Brazilian Soil Spectral Library (BSSL)
began in 1995, creating a protocol to gather soil samples from different locations in Brazil. The BSSL reached
39,284 soil samples from 65 contributors representing 41 institutions from all 26 states. Through the BSSL
spectra database, it was possible to estimate important soil attributes, such as clay, sand, soil organic carbon,
cation exchange capacity, pH and base saturation, resulting in differences among the multi-scale models taking
Brazil (overall), regional and state scale. In general, spectral descriptive and quantitative behavior indicated
important relationship with physical, chemical and mineralogical properties. Statistical analyses showed that six
basic patterns of spectral signatures represent the Brazilian soils types and that environmental conditions explain
the differences in spectra. This study demonstrates that spectroscopy analyses along with the establishment of
soil spectral libraries are a powerful technique for providing information on a national and regional levels. We
also developed an interactive online platform showing soil sample locations and their contributors. As soil
spectroscopy is considered a fast, simple, accurate and nondestructive analytical procedure, its application may
be integrated with wet analysis as an alternative to support the sustainable management of soils.

1. Introduction

Soil is a fundamental natural resource for sustaining life in the
planet and economic development, since it provides several ecosystem
services and is the basic resource for many human activities (Adhikari
and Hartemink, 2016; Jónsson and Davíðsdóttir, 2016). Thus, the
knowledge about soil physical and chemical properties and their spatial
variabilities are the essence for their sustainable use, planning and
adequate management, aiming for greater productivity and conserva-
tion (Wall and Nielsen, 2012).

Earth has about 150 million km2 of land and most of it is not totally
known in terms of soil surface composition, which is usually made by
traditional wet analysis. Since this technique has been used for > 100
years, it is considered the most relevant to characterize soil properties.
However, this approach suffer from the usage of chemical reagents and
time consuming (Viscarra Rossel et al., 2016). Besides, there are still
uncertainties and discussion of current methods and its results, which
frequently lead to difficulties in the interpretation and misleading
communication. These issues took research to seek for other strategies
on to optimize and/or assist these previous and important wet methods.

Proximal sensing research community has applied spectroscopy
techniques systematically on the last 40 years to reach soil properties
with important results (Nocita et al., 2014). The spectral range com-
monly used to study spectral pattern of soils corresponds to
400–700 nm (visible - Vis), 700–1100 nm (near infrared - NIR) and
1100–2500 nm (shortwave infrared - SWIR) which can be obtained by
sensors in the field or laboratory and has been the baseline for optical

aerial/satellite remote sensing (reflectance spectroscopy, imaging
spectroscopy). In this case, from the surface reflectance of the samples
measured in laboratory, it is possible to develop models relating the
spectral pattern to some soil characteristics which can be extrapolate to
satellite spectral data, making possible to map large areas (Demattê,
2016). Since Bowers and Hanks (1965), soil reflectance has been stu-
died and reached a strong background on its interpretation. During this
period, sensing data has showed a strong relationship with several soil
attributes, i.e., soil organic carbon (Stevens et al., 2008), texture
(Brodský et al., 2011), mineral composition (Viscarra Rossel et al.,
2006), and others (Nocita et al., 2014). The technique allows the si-
multaneous characterization of soil attributes with the advantage of
being a non-destructive method of in situ observation (Viscarra Rossel
et al., 2006).

To make spectral information useful for the soil science community,
it is imperative to have reference patterns in a database (Viscarra Rossel
and Behrens, 2010), commonly named spectral libraries. A diverse
database is fundamental to understand soils spectral behavior and reach
its attributes prediction from spectra (Shepherd and Walsh, 2002). After
this study, others came along such as Brown et al. (2006) and Viscarra
Rossel and McBratney (2008). The ICRAF-ISRIC world soil spectral li-
brary (Garrity and Bindraban, 2004), for example, is composed of 785
soil profiles from 58 countries from Africa, Europe, Asia, and the
Americas. Viscarra Rossel and Webster (2012) described a large spec-
tral library with ~4000 soil profiles covering the Australian continent.
A spectral library covering the United States (US) has been setting on
the Rapid Carbon Assessment (RaCA) project (Soil Survey Staff, 2014)
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with 144,833 Vis-NIR spectral curves from 32,084 soil profiles. The
European spectral library called LUCAS consists of about 20,000 topsoil
samples, collected from 23 countries in the European continent, and
measured for 13 soil properties in a single laboratory (Stevens et al.,
2013). Another important example of soil spectral library (SSL) was the

ASTER spectral library (Baldridge et al., 2009), a compilation of 2400
spectra of soils, rocks, minerals and other related materials. SSL in-
itiatives in other countries include: Brazil (Bellinaso et al., 2010), Czech
Republic (Brodský et al., 2011), France (Gogé et al., 2012), Denmark
(Knadel et al., 2012), Mozambique (Cambule et al., 2012), and China

Fig. 1. Methodological sequence for the development of the Brazilian Soil Spectral Library (BSSL) development (a) and flowchart representing the statistical analyses
of BSSL(b).
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(Ji et al., 2016; Shi et al., 2014). Finally, a world soil spectral library
was constructed for soil organic carbon, soil texture, iron, CaCO3, CEC,
and pH with 90 participating countries (Viscarra Rossel et al., 2016).
Such collaborative initiatives open many doors for its applicability.

Brazil is the largest country in South America, with an area of ~ 851
million ha, and is the fifth largest in the world. It has ~ 152.5 million ha
in agricultural land (18% of total). Soil mapping and pedologic prop-
erties characterization with conventional survey and laboratory
methods is enormous challenge. An example of this effort is the
PronaSolos (Polidoro et al., 2016), a forthcoming national program that
aims to provide more detailed mapping of soils in Brazil. Thus, soil
sensing and the fusion of spectral data are promising allow quick ac-
quisition of information for surveying large areas of soils (Grunwald
et al., 2015). The State of São Paulo had its first soil spectral Atlas
performed by Epiphanio et al. (1992), which was published afterwards
by Formaggio et al. (1996). Bellinaso et al. (2010) and Terra et al.
(2015) created soil spectral libraries from states of the South Central of
Brazil. However, the country still does not have a standardized SSL to
integrate the soil research community and support different applica-
tions for studying soil resources.

The objective of this study was to present the first integrated SSL
and its relationship with soil attributes and other environmental char-
acteristics covering most of the Brazilian soils. The Brazilian Soil
Spectral Library (BSSL) allows the exploration of new approaches on
proximal and remote spectral sensing. We hypothesize that spectral
data relate to geographical and environmental variables.

2. Material and methods

2.1. The collaborating system

The BSSL started in 1995 with a collection of soil samples from the
Department of Soil Science, Luiz de Queiroz College of Agriculture,
University of São Paulo (ESALQ-USP), where spectral reflectance was
measured and inserted into the database. The collaboration system of
the BSSL is shown in Fig. 1a and the flowchart with data description is
in Fig. 1b. A dynamic and interactive online platform showing the
Brazilian map with all BSSL data was also created. This online platform
facilitates the communication between any user who wants to contact
the researchers and use their soil spectra dataset. The interactive map
can be accessed at < https://bibliotecaespectral.wixsite.com/esalq > .

2.2. Description of the spectral database

The current spectral library contains 39,284 soil samples from 65
contributors representing 41 institutions. The Brazilian spectral data-
base was constructed combining all the soil samples from the colla-
borators. Fig. 2 shows the maps of Brazil with the region, state, geology,
biome, soil class, and sample points. The Brazilian regions are North
(N), Northeast (NE), Midwest (MW), Southeast (SE), and South (S)
(Fig. 2a). The Brazilian states are Acre (AC), Alagoas (AL), Amapá (AP),
Amazonas (AM), Bahia (BA), Ceará (CE), Distrito Federal (DF), Espírito
Santo (ES), Goiás (GO), Maranhão (MA), Mato Grosso (MT), Mato
Grosso do Sul (MS), Minas Gerais (MG), Pará (PA), Paraíba (PB), Paraná
(PR), Pernambuco (PE), Piauí (PI), Rio de Janeiro (RJ), Rio Grande do
Norte (RN), Rio Grande do Sul (RS), Rondônia (RO), Roraima (RR),
Santa Catarina (SC), São Paulo (SP), Sergipe (SE), and Tocantins (TO)
(Fig. 2b). The geology is represented by igneous, metamorphic, and
sedimentary rocks (Fig. 2c). The biomes are Amazon, Caatinga, Cer-
rado, Atlantic Forest, Pampa, and Pantanal (Fig. 2d). Only the most
representative soil classes are presented in the Brazilian map, which are
Lixisols, Ferralsols, and Arenosols (Fig. 2e). The geographic locations of
the soil samples are shown in Fig. 2f. When the information provided by
the contributors had no geographical coordinates, the points were al-
located at the nearest city.

Most of the samples that compose the database came from the SE

and MW regions, with 19,429 and 9391 samples, 50% and 24% of the
samples, respectively (Fig. 3a). São Paulo (SP), Mato Grosso do Sul (MS)
and Goiás (GO) states (26,474 samples total) correspond to 68% of all
samples (Fig. 3b). Samples are from soils formed mainly in three li-
thologic groups, igneous and sedimentary with 10,621 and 10,409
samples, respectively 21,030 in total (Fig. 3c). The most represented
biomes are the Atlantic Forest and Cerrado, with 19,248 (53%) and
12,468 (34%), respectively (Fig. 3d). The soil class with most samples is
the Ferralsols (22,674 samples, equivalent to 63% of all samples) lo-
cated mainly in the SE and MW regions (Fig. 3e). Other soil classes
represented in the BSSL are Arenosols. Ferralsols and Lixisols represent
the two most important soil classes in Brazil, covering about 31.5 and
26.8% of the Brazilian territory, respectively. These two classes re-
present 86% of all samples in the database (31,551 samples) (Fig. 3e).
Considering the total database, 79% of the samples present A
(0–20 cm), B (40–60 cm), C (80–100 cm), and D (100–120 cm) layers
(Fig. 3f). Approximately 43% of all samples have soil organic carbon
(SOC), 85% have granulometry, 35% have cation exchange capacity
(CEC), 67% have values of pH in water and 72% have base saturation
(BS) (BS = [Ca + Mg + K + Na]/CEC × 100) (Donagemma et al.,
2011) measurements.

2.3. Spectral data, preprocessing and transformations

All soil samples from the database were previously dried at 45 °C,
ground and sieved with 2 mm mesh and then homogeneously dis-
tributed in Petri dishes prior the measurement of the spectra. The
spectral data were acquired by the Geotechnologies in Soil Science
group (GeoSS), São Paulo, Brazil, using the Fieldspec 3 spectro-
radiometer (Analytical Spectral Devices, ASD, Boulder, CO), which has
a spectral range from visible to shortwave infrared (350–2500 nm) and
spectral resolution of 1 nm from 350 to 700 nm, 3 nm from 700 to
1400 nm, and 10 nm from 1400 to 2500 nm. The sampling interval of
data output is 1 nm reporting 2151 channels. One of the strengths of the
database is that all spectral analyses followed the standardized spectral
library analysis protocol.

The spectral sensor, which was used to capture light through a fiber-
optic cable, was allocated at 8 cm from the sample surface. The sensor
scanned an area of approximately 2 cm2, and a light source was pro-
vided by two external 50-W halogen lamps. These lamps were posi-
tioned at a distance of 35 cm from the sample (non-collimated rays and
a zenithal angle of 30°) with an angle of 90° between them. A Spectralon
standard white plate was scanned every 20 min during scanning. Two
replicates (one involving a 180° turn of the petri dish) were obtained for
each sample. Each spectrum was averaged from 100 readings over 10 s.
The mean values of two replicates were used for each sample. Ninety-
eight percent (98%) of soil spectra were measured in GeoSS Lab, fol-
lowing the protocol proposed by Ben-Dor et al. (2015). Although the
other 2% were not measured by the same equipment, protocols for
spectra acquirement were strictly followed. Considering that practically
all the spectral library was built with the same protocol, performing a
calibration transfer function would demand time and resources, while
the improvements would most likely be fairly small.

The spectral reflectance was transformed to continuum removal
(CR) (Clark and Roush, 1984). This preprocessing removes the con-
tinuous features of spectra and is often used to isolate specific absorp-
tion features. The CR creates a continuum or hull similar to fitting a
rubber band over the original spectrum. The spectrum is normalized by
setting the value of the hull to 100% reflection, where the first and last
values of the continuum-removed spectrum equal 1. We applied CR
preprocessing because of its strength and ability to enhance absorption
depths by correcting apparent shifts from wavelength-dependent scat-
tering, highlighting specific absorption bands of a reflectance spectrum
(Mutanga et al., 2005).Besides that, the CR preprocessing is capable of
providing calibration models with high accuracy.

We used heuristically testing to optimize the clustering procedure,
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which involved grouping the samples by their reflectance spectra. The
reflectance intensity provides important information in the spectral
characterization of soils, but in our case, it did not provide good results.
Initially, we had clustered the samples based on the reflectance spectra,
but the fuzzy performance indicators were not satisfactory. On the other
hand, when employing the CR spectra, we not only produced reason-
able performance indices but also had results similar to other studies
(e.g. Demattê et al., 2016; Terra et al., 2018). Although the reflectance
intensity corresponds to a large share of spectral variance, there are
other information in the spectrum which are extremely important to
soils discrimination (e.g. features related to clay minerals at around
1200, 1900 and 2200 nm). The potential of such information should not
be underestimated.

2.4. Principal component analysis

The CR spectra were analyzed by principal component analysis
(PCA) to reduce dimensionality and improve computational efficiency.
The data was not standardized to make easier the interpretation of
absorption features in continuum spectra. We used both the scores and
eigenvectors of PCA to assist in the interpretation of BSSL data.

Geographical and environmental characteristics were associated
with the spectral data and the Brazilian spectral samples were separated
according to 5 regions, 26 states, 3 geologies, 6 biomes, 11 soil classes
and 4 soil depths (Fig. 3). The PCA was used to investigate the asso-
ciations between groups and spectral data. The PCA correlates the
average soil spectral reflectances with regions, states, geology, biomes,

Fig. 2. Maps representing the Brazilian regions (a), states (b), geology (c), biomes (d), main soil classes (e), and sampling locations of the Brazilian Soil Spectral
Library (f).
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soil classes, and layers. Soil classes in the Brazilian Soil Classification
System were correlated with the WRB classification (IUSS Working
Group WRB, 2015). The BSSL presents a large variation of samples
considering layers, surface and subsurface horizons, and complete soil
profiles. However, only soil samples that had the following depths were
selected for PCA with layers' data: A (0–20 cm), B (40–60 cm), C
(80–100 cm), and D (100–120 cm). Considering all samples from the

spectral database, 84% were taken collected with auger, 12% from
complete profiles and 4% only from the surface layer (0–20 cm).

2.5. Spectroscopic modeling of soil attributes

The soil attributes selected for predictive modeling were sand, clay,
SOC, pH, CEC, and BS. Several strategies of modeling were performed

Fig. 3. Distribution of soil samples according to Brazilian regions (a); states (b); geology (c); biomes (d); soil classes (considering layers A and B) (e); soil layers (f);
and soil attributes (g). The number of samples varies for each group depending on the available information. Soil classes were defined according to World Reference
Base (International Union of Soil Science Working Group WRB, 2015). Soil layers corresponded to A (0–20 cm), B (40–60 cm), C (80–100 cm), and D (100–120 cm).
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to predict these attributes. First, national, regional and state models
were developed for each attribute, where the national model included
the complete database. The datasets for each soil attribute were sepa-
rated into training and independent validation by a 70:30 split. This
separation was carried out using random division, which was able to
separate the groups homogeneously. The cubist method (Quinlan,
1992) was applied to train the spectroscopic models. Cubist applies the
M5 (Model Tree approach) to grow categorical decision trees to handle
continuous classes by placing a multivariate linear model at each leaf.
The model building and estimation process were achieved by the caret

package (Kuhn et al., 2017) in R (R Core Team, 2018). This package has
a set of functions that attempt to streamline the process for creating
predictive models. The calibration function was applied to adjust the
best fitted model using optimal tuning parameters as follows: cross-
validation resampling, committees, and neighbors.

For each soil attribute the performance of the models were assessed
by comparing the predicted and observed values based on the in-
dependent validation data set. The coefficient of determination (R2)
(Eq. (1)), root mean squared error (RMSE) (Eq. (2)), and ratio of per-
formance to interquartile distance (RPIQ) (Eq. (3)) were assessed to

Fig. 4. Soil reflectance spectra averaged according to each region (a); state (b); geology (c); biome (d); soil class (considering layers A and B) (e); and layer (f). The
number of samples considered in each group are shown in Fig. 3.
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Fig. 5. Principal component scores 1 (PC1) and 2 (PC2) calculated from the average reflectance spectra of each region (a), state (b), geology (c), biome (d), soil class
(e), and layer (f).
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quantify the inaccuracy of the estimates.
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where ŷ is the predicted value, ȳ is the mean of the observed value, y is
the observed values, n is the number of samples with i equal to 1, 2, …
n, IQ is the difference between the third and first quartiles (Q3 - Q1).

The textural triangle was developed using the reference values for
clay, sand and silt, called observed, and using the predicted values for
clay and sand obtained by each model, i.e., the predicted values used in
the triangle of BSSL were originated from the national model, and the
predicted values of S region were originated from the S model. The silt
content was calculated by the difference of clay plus sand content. The
textural triangle was carried out in R using the soiltexture package
(Moeys, 2016).

2.6. Spectral patterns classification

The classification of spectral patterns was performed aiming to re-
present Brazilian soils. The reflectance was transformed to CR, which
was used to classify spectra into general groups. The question was: How

many classes of spectra were necessary to represent the Brazilian soils?
To answer that, we classified the spectra by clustering via similarity
measurements. The first three principal component scores were classi-
fied by the fuzzy c-means algorithm (Bezdek et al., 1984). This ap-
proach produces two methods of classification: crisp and fuzzy mem-
bership degrees. The first produces the crisp or hard (no-fuzzy)
membership degrees of the objects in order to place them into only one
discrete cluster. The fuzzy c-means technique assigns a fuzzy mem-
bership degree to each data point based on its distances to the cluster
centers. The fuzzy approach is based on the distance between various
input data points (PCA scores). This algorithm assigns a fuzzy mem-
bership degree to each data point based on its distances to the cluster
centers. The farther from the center of the cluster the smaller the
probability of the point being classified in the respective class. The
fuzzy membership degrees are continuous and range from 0 to 1. Each
sample has a membership in every cluster, where close to 1 indicates a
high degree of similarity between the sample and a cluster, while close
to 0 implies a low similarity (Bezdek et al., 1984).

Fuzzy clustering requires the user to predefine the number of clus-
ters (c), but it is not always possible to know this number in advance. To
obtain the ideal number of c-means cluster two validation functions
were performed. The two most important validity index functions to
determine the optimal number of clusters are as follow: (a) partition
coefficient (pC) and(b) partition entropy (pE) (Bezdek et al., 1984). The
best performance is achieved when the pC achieves its maximum value
or pE obtains its minimum. All analyses and statistical procedures de-
scribed above were performed by the R programming (R Core Team,
2018). The crisp and fuzzy c-means clustering was carried out using the

Table 1
Cubist model parameters, descriptive statistics, and results of prediction models of Soil Organic Carbon (SOC).

SOC (g kg-1) Descriptive analysis Observations Training set Validation set

Mean SD Min Max Total Train. Val. R2 RMSE RPIQ R2 RMSE RPIQ

National 8.9 11.9 0.0 431.1 18076 12653 5423 0.82 5.07 1.38 0.78 6.89 0.94

Regions South 12.0 15.1 0.0 141.4 1833 1283 550 0.82 6.66 2.69 0.71 8.12 2.05
Southeast 8.0 5.2 0.0 54.9 9252 6476 2776 0.72 2.82 2.06 0.74 2.75 2.11
Midwest 8.6 5.3 0.6 57.0 3104 2173 931 0.84 2.10 3.04 0.84 2.28 2.55
Northeast 13.4 35.2 0.0 431.1 1309 916 393 0.87 14.64 0.69 0.79 9.97 1.15
North 8.2 6.7 0.0 105.6 2578 1805 773 0.64 4.20 1.66 0.58 4.41 1.-

80

States AC - - - - - - - - - - - - -
AL 1.5 1.0 0.7 4.1 32 19 13 0.29 0.92 1.49 0.43 0.76 1.22
AM 8.0 8.1 0.1 105.6 435 304 131 0.78 3.20 1.64 0.72 5.92 1.15
AP 12.4 6.6 2.0 56.0 817 571 246 0.21 5.70 1.31 0.32 6.09 1.64
BA 1.8 1.7 0.3 20.2 242 169 73 0.87 0.75 1.64 0.84 0.39 2.31
CE 40.5 55.7 0.5 310.8 105 73 32 0.98 6.55 5.54 0.93 25.93 0.91
ES - - - - - - - - - - - - -
GO 11.5 6.7 1.7 66.0 618 432 186 0.84 2.70 3.66 0.83 2.73 2.98
MA 1.5 0.8 0.2 4.0 74 51 23 0.14 0.77 1.25 0.40 0.75 0.96
MG 11.8 7.6 0.0 59.9 1065 745 320 0.88 2.74 3.81 0.89 2.45 3.85
MS 7.5 4.3 0.6 32.6 2269 1588 681 0.85 1.73 2.68 0.85 1.72 2.71
MT 12.8 5.0 4.1 25.6 217 151 66 0.90 1.57 5.38 0.89 1.65 5.11
PA 6.3 5.3 0.1 38.9 305 213 92 0.61 3.60 1.42 0.69 3.24 1.73
PB - - - - - - - - - - - - -
PE 10.8 8.7 0.0 70.0 773 541 232 0.84 3.45 2.32 0.84 4.02 2.10
PI 8.5 7.9 0.1 33.3 67 34 33 0.46 5.88 1.13 0.41 6.57 1.70
PR - - - - - - - - - - - - -
RJ - - - - - - - - - - - - -
RN - - - - - - - - - - - - -
RO 7.7 4.3 1.2 20.9 642 449 193 0.66 2.51 1.85 0.65 2.51 1.62
RR 1.7 0.9 0.0 8.0 379 265 114 0.17 0.87 1.09 0.24 0.73 1.32
RS 8.2 15.2 0.0 141.4 1238 866 372 0.81 6.86 0.57 0.76 8.57 0.44
SC 20.0 11.2 0.2 93.2 595 416 179 0.74 5.92 2.51 0.86 3.89 3.86
SE - - - - - - - - - - - - -
SP 7.5 4.6 0.0 48.0 8185 5729 2456 0.66 2.80 1.90 0.66 2.63 1.99
TO - - - - - - - - - - - - -
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ppclust package (Cebeci et al., 2018).
The SSL was clustered by fuzzy c-means and crisp fuzzy techniques

to evaluate the potential of spectral data in the discrimination of soil
types. By testing the SSL with two different clustering methods, we
intended to evaluate if the soil spectral groups were robust and capable
of being replicated by different clustering methods. The inter-compar-
ison between c-means and crisp methods was done using Sankey dia-
gram (Schmidt, 2008), which assesses the relative associations between
memberships. The diagram represents the relationship between groups
by linking the clusters from the c-means technique with the ones from
crisp fuzzy analysis. Higher associations between two groups are re-
presented by proportionally larger links, while poor relation between a
pair of clusters is represented by thin links.

2.7. Correspondence analysis

The associations between geological and environmental character-
istics with soil spectral classes defined by cluster analysis were identi-
fied through correspondence analysis (CA). This technique is designed
specifically for the analysis of categorical variables, and its primary
goal is to illustrate the most important relationships among the vari-
ables' response categories using a graphical representation (Benzécri,
1992). The concept is similar to PCA but applies to categorical rather
than continuous data. It summarizes the associations between the
spectral soil classes and the variables (regions, states, geology, biomes,
soil classes, and layers) in two-dimensional graphical forms. The CA
plots are derived from a table where the rows are the characteristics
(e.g. states of Brazil, biome, etc.) and the columns are the six spectral

classes. The CA was applied using the FactoMineR package (Lê et al.,
2008).

3. Results and discussion

3.1. Soil reflectance spectra vs physiographic and soil characteristics

The higher sand content in NE region caused an increase in re-
flectance compared to other regions (Fig. 4a). On the average, the sand
content of NE region is 651 g kg−1, while the S region is 264 g kg−1.
Soils from the S region of Brazil, where predominantly formed under
the influence of basalt or related to igneous rocks (Fig. 2c), which
presented low reflectance values due to iron oxides and opaque mi-
nerals (Fig. 4a). This region also has specific temperate climate, which
favors the preservation of SOC, and this agree with its lower spectra. In
general, in relation to the geology, spectral signatures from igneous
rocks are usually rich in calcium and iron and had low reflectance
(Fig. 4c), while soils formed in metamorphic parent material showed
high reflectance values. In these soils, reflectance features were mainly
linked to orthoclase, quartz and plagioclase minerals. The low re-
flectance values found in soils formed in igneous rocks, such as basalt
and diabase with high amounts of iron, were correlated with high clay
contents and consequently higher influence of scattering. The soils from
the Cerrado biome revealed the lowest spectral reflectance and has a
spectral feature located at 2265 nm related to gibbsite (Fig. 4d). In fact,
most of Cerrado present high weathered soils (Ferralsols) and agrees
with the indicated spectral feature (Madeira Netto, 2001) (Fig. 4d). The
Atlantic Forest also presented a low reflectance curve. The higher

Table 2
Cubist model parameters, descriptive statistics, and results of prediction models of clay.

Clay (g kg-1) Descriptive analysis Observations Training set Validation set

Mean SD Min Max Total Train. Val. R2 RMSE RPIQ R2 RMSE RPIQ

National 327.5 217.6 0 986.8 32350 22645 9705 0.88 77 4.35 0.88 75.93 4.36

Regions South 448.6 197.4 0 880 4059 2841 1218 0.83 82.02 3.91 0.83 81.12 4.2
Southeast 284.5 201.6 5 960 17448 12214 5234 0.91 59.89 3.76 0.92 58.82 3.71
Midwest 352.5 242.4 0 910 7656 5359 2297 0.94 59.25 7.75 0.94 58.61 7.68
Northeast 222.4 136.9 3 629 609 426 183 0.75 70.13 3.06 0.78 59.28 2.99
North 378.6 190.8 10 986.8 2578 1805 773 0.71 102.67 2.62 0.74 96.85 2.-

48

States AC - - - - - - - - - - - - -
AL 130.9 76.7 30 300 32 22 10 0.72 45.38 2.2 0.71 38.71 2.07
AM 315.8 224 10 986.8 550 385 165 0.85 86.37 2.83 0.8 101.5 2.18
AP 469.8 172.4 80 920 432 302 130 0.57 112.74 2.31 0.61 109.45 2.54
BA 230.2 136 11 626 402 281 121 0.83 56.45 3.6 0.84 52.85 4.01
CE 256.8 144.4 20 534 23 16 7 0.49 105.19 1.96 0.42 107.84 1.77
ES 209.9 130.7 10 600 100 70 30 0.92 37.6 3.99 0.92 38.53 5.97
GO 311.6 253 20 890 2148 1504 644 0.97 47.24 9.97 0.96 52.15 8.99
MA - - - - - - - - - - - - -
MG 550.7 244.1 10 960 1729 1210 519 0.88 83.95 5.1 0.88 87.79 5.01
MS 372 236.7 0 910 5350 3745 1605 0.94 55.81 7.84 0.93 61.27 7.41
MT 245.3 182.5 20 840 158 111 47 0.81 88.04 1.14 0.83 53.89 1
PA 341.4 205 15.8 931.4 296 207 89 0.63 124.26 1.93 0.69 116.23 2.38
PB - - - - - - - - - - - - -
PE 268.2 102.7 90 490 69 48 21 0.67 58.7 3.34 0.63 63.54 2.44
PI 147.2 148.8 3 595 66 46 20 0.6 93.72 2.15 0.5 105.55 1.58
PR 555.7 217.1 0 880 299 209 90 0.86 83.06 4.33 0.81 88.3 3.45
RJ - - - - - - - - - - - - -
RN 268.2 138.2 98 533 17 9 8 0.52 100.94 2.16 0.43 98.51 1.49
RO 451.3 161.1 80 880 642 449 193 0.89 53.96 4.45 0.89 55.85 4.65
RR 327.9 129 48 800 626 438 188 0.69 73.49 2.18 0.68 69.38 2.33
RS 445.6 207.8 0 837 1642 1149 493 0.84 84.21 4.37 0.85 78.8 4.6
SC 435.7 181.1 0 800 2118 1483 635 0.84 72.58 4 0.85 70.18 4.13
SE - - - - - - - - - - - - -
SP 255.5 173.2 5 910 15617 10932 4685 0.9 54.24 3.13 0.9 54.33 3.17
TO 106.3 124.8 10 530 32 19 13 0.82 34.39 2.04 0.8 86.52 0.69
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reflectance was found in Caatinga biome (Fig. 4d), which can be ex-
plained by the predominance of sandy particles in soils, besides the
high temperatures that have accelerate the decomposition of soil or-
ganic matter resulting on relatively low SOC. The representation of the
spectral curves of each biome is a generalization, because within each
of them there is a great complexity of soil types. For instance, the
Atlantic Forest biome extends from southern to northern Brazil with
different soil types. Among the soil classes, the spectral curve of the
Nitisols showed the lowest reflectance (Fig. 4e). This soil originated
mainly from mafic rocks such as basalt and diabase, present high
amounts of clay, iron oxide and opaque minerals (IUSS Working Group
WRB, 2015). The spectral curve of the Histosols presented low re-
flectance in the visible spectral region due to the high content of SOC.
Contrarily, the Podzols had the highest reflectance, followed by the
Cambisols rich in quartz (Fig. 4e). The Arenosols, for example, showed
greater reflectance in the A layer due to higher sand content in relation
to subsurface (Fig. 4f). The average reflectance curves of the four layers
(soil depths) (Fig. 4f) indicate the differences in SOC content: from 550
to 900 nm the reflectance increases while SOC decreases. The spectral
range from 1500 to 2500 nm was influenced by quartz, due to the high
reflectance values in all four soil layers. The B and C layers were
identical, which is attributed to low variation in mineralogy and tex-
ture. In general, features (shapes and intensities) are related with sev-
eral soil properties and assist on to reach a comprehensive information
of the soil sample (Fig. 4d), despite statistical models. An interesting
observation is that spectra from GO and MT (MW Brazil) presents
gibbsite oxide (Fig. 4b), seen at 2265 nm, as the ones from RN is
completely absent of this feature, which agrees with the more and less
weathered soils of these two regions, respectively.

The PCA revealed that the first principal component (PC1) accounts
explained 85% of the variance in the data (Fig. 5). The PCA of spectra
averaged by region (Fig. 5a) was able to detect that the N, NE and S
regions presented different soil spectral patterns. However, soil spectra
from the MW and SE were grouped together, showing nearly the same
spectral pattern in these regions. Among soils from 26 Brazilian states
some showed similar factor loadings (Fig. 5b). For example, the average
soil spectra from MT and GO states as well as for AP and AC; MS and RS;
PR, and SC; BA, RN, and ES; MA, and SP; AL, and PA; RJ, and PB
grouped together. Soil spectra from AM, PE, PI, TO, SE, and RO states
showed different patterns and were not grouped. For the three geolo-
gical classes, the PCA discriminated them by showing separated data
distributions (Fig. 5c). The PCA result for the biomes indicated that
Caatinga and Amazon present distinct spectral curves (Fig. 5d). Indeed,
these are two important and very distinct environments (Amazon:
tropical humid soils; Caatinga: semiarid soils). This finding is corro-
borated by the result in Fig. 4d, where the Caatinga showed a spectral
curve with high reflectance and the Amazon presented higher intensity
reflectance in the visible region. This interpretation agrees with spectra
by regions (Fig. 5a). However, soils from Pantanal and Pampa pre-
sented small differences in spectral pattern similar to the Atlantic Forest
and Cerrado (Fig. 5d). The principal component scores discriminated
well among Podzols, Plinthosols, Histosols, and Lixisols, using only B
layer (40–60 cm depth) (Fig. 5e). Conversely, Nitisols, Cambisols, and
Ferralsols were grouped relatively close together suggesting similarities
spectral pattern. The same arrangement was found among Planosols,
Gleysols, and Vertisols, which are soils formed under the influence of
hydromorphic conditions with more prolonged water saturation typi-
cally exhibiting the Fe3+reduction and high SOC. In contrast Podzols,

Table 3
Cubist model parameters, descriptive statistics, and results of prediction models of sand.

Sand (g kg-1) Descriptive analysis Observations Training set Validation set

Mean SD Min Max Total Train. Val. R2 RMSE RPIQ R2 RMSE RPIQ

National 529.7 284.1 0.0 990.0 33481 23437 10044 0.87 102.06 5.17 0.87 103.03 5.08

Regions South 242.9 213.9 10.0 990.0 4059 2841 1218 0.78 101.82 2.65 0.77 101.54 2.65
Southeast 606.2 252.4 0.0 970.0 17687 12381 5306 0.90 80.67 4.34 0.90 80.02 4.35
Midwest 567.8 278.9 0.0 966.0 7656 5359 2297 0.94 66.10 8.05 0.94 68.04 7.90
Northeast 651.9 237.3 26.0 988.0 682 477 205 0.80 106.18 2.74 0.83 102.00 2.98
North 363.0 244.2 0.0 980.0 3397 2378 1019 0.79 113.73 4.04 0.78 114.95 3.6-

8

States AC - - - - - - - - - - - - -
AL 796.9 87.9 610.0 940.0 32 19 13 0.40 64.16 1.44 0.38 78.69 1.21
AM 373.6 197.6 0.0 910.0 551 386 165 0.71 108.92 2.31 0.71 119.88 2.41
AP 203.2 223.4 0.0 808.0 1250 875 375 0.84 90.47 3.54 0.83 93.95 3.30
BA 734.6 150.7 96.0 988.0 402 281 121 0.78 69.31 3.13 0.80 71.66 2.51
CE 434.1 280.9 26.0 977.0 95 67 29 0.88 107.93 5.22 0.90 87.27 5.43
ES 747.4 136.1 360.0 950.0 100 70 30 0.86 46.28 3.35 0.87 57.95 4.23
GO 626.9 294.5 36.9 951.0 2148 1504 644 0.96 55.65 10.26 0.97 53.94 10.31
MA - - - - - - - - - - - - -
MG 271.2 215.7 0.0 970.0 1729 1210 519 0.80 98.88 3.20 0.78 102.97 3.25
MS 542.0 269.5 0.0 966.0 5350 3745 1605 0.94 64.73 8.03 0.95 61.89 8.11
MT 638.6 237.0 20.0 960.0 158 111 47 0.87 81.81 1.92 0.83 110.60 1.81
PA 474.8 260.8 13.0 945.0 296 207 89 0.67 152.30 2.83 0.73 134.56 3.09
PB - - - - - - - - - - - - -
PE 467.07 166.3 93.0 897.0 69 48 21 0.21 147.06 1.40 0.30 141.66 1.38
PI 610.2 358.2 27.0 985.0 67 47 20 0.83 153.65 4.56 0.80 169.41 3.83
PR 298.6 247.4 10.0 960.0 299 209 90 0.91 74.91 5.07 0.90 72.17 3.50
RJ - - - - - - - - - - - - -
RN - - - - - - - - - - - - -
RO 508.2 162.9 100.0 900.0 642 449 193 0.88 54.50 4.40 0.88 59.80 4.52
RR 446.1 177.7 6.0 910.0 626 438 188 0.55 121.23 1.90 0.58 117.05 1.95
RS 241.7 229.5 10.0 928.0 1642 1149 493 0.78 111.46 2.39 0.81 99.93 2.43
SC 235.9 194.2 10.0 990.0 2118 1483 635 0.82 82.92 3.27 0.82 83.12 3.01
SE - - - - - - - - - - - - -
SP 641.9 228.6 0.0 969.0 15856 11099 4757 0.89 76.13 2.89 0.89 75.58 3.02
TO 846.6 164.9 290.0 980.0 32 22 10 0.91 48.14 1.77 0.88 73.29 1.50
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Plinthosols, Histosols and Lixisols show large differences in the content
of SOC, iron oxides and texture. For instance, Podzols have SOC mainly
associated with a sandy texture, dominantly quartz, and associated with
complexes of Al and Fe. Plinthosols are characterized by high iron
oxides and low crystallinity degree in the form of nodules and low
content of SOC. Histosols have high content of SOC, and low Fe content.
Lixisols have kaolinite dominance, variable texture and low SOC con-
tent. Another group is represented by soils without texture gradient
such as Nitisols, Cambisols, and Ferralsols. On the other hand, Lixisols
with textural gradient or Histosols, with very high SOC were dis-
criminated by principal component scores. The PCA for layers detected
that A (surface) and D (subsurface) layers were separated suggesting
distinct spectral pattern in these two layers (Fig. 5f). The B and C layer
were placed in proximity in the PCA graphs indicating that they were
similar in relation to the soil spectra (Fig. 5f).

3.2. National, regional, and state prediction of soil attributes

The national model produced R2 of 0.78 and RMSE of 6.89 g kg−1

for SOC prediction in validation model (Table 1). For SOC prediction in
validation model, the regional models showed R2 ranging from 0.58 to
0.84 and RMSE from 2.28 to 9.97 g kg−1. The MW region presented the
best results, while the N region the worse. The state that presented the
best results was MT with R2 of 0.89 and RMSE of 1.65 g kg−1. From the
18 states with SOC prediction models, 8 showed a R2 above 0.80 and
only two showed R2 below 0.32 (AP and RR). The worst R2 were as-
sociated either with a small number of samples or a high variability in
SOC.

Among all the soil variables predicted, clay showed the highest
coefficient of determination in validation mode at national level with

0.88 and RMSE of 75.93 g kg−1 (Table 2). At the regional level, all clay
validation models had R2 higher than 0.71 and the SE and MW regions
had R2 higher than 0.91 and RMSE lesser than 60 g kg−1. At the state
level, the best result was found for GO with R2 of 0.96, RMSE of
52.15 g kg−1 and RPIQ of 8.99. From the 21 states with clay prediction,
13 showed R2 higher than 0.80 and only 3 had R2 below 0.50.

For sand predictions in validation mode at the national level showed
R2 of 0.87 and RMSE of 103.03 g kg−1 (Table 3). At regional scale, the
MW region showed the best performing validation sand model with R2

of 0.94 and the S region the worse, but still with moderate well pre-
dictions (R2 = 0.77 and RMSE = 114.95 g kg−1). At the state level, 20
sand models were generated with GO showing the best results
(R2 = 0.97 and RMSE = 53.94 g kg−1). In 14 states the R2 were higher
than 0.80 and only PE had R2 below 0.50 for predictive modeling of
sand.

At the national level, the validation of the model generated for pH
prediction showed a R2 of 0.54 and RMSE of 0.39 (Table 4). In general,
the national pH model was better than the regional ones. Only the NE
region presented a higher R2 (0.65) in validation mode, while the S
region showed the smallest R2 (0.34). The good result for the NE region
is related to the well-performing pH models generated for the CE and PE
states that belong to this region and had the highest R2, both with 0.97.
From the 16 analyzed states, 9 pH prediction models had poor results
with R2 below 0.50.

The prediction validation of CEC at the national level reached a R2

of 0.68 and RMSE of 24.02 cmolc kg−1 (Table 5). At the regional level,
NE showed the best validation results (R2 = 0.89 and RMSE = 27.68
cmolc kg−1) and the S region the worst (R2 = 0.64 and RMSE = 3.81
cmolc kg−1). At the state level, MT, RN and SE showed a R2 above 0.93,
and three states showed a R2 below 0.30 (AL, PA and PE).

Table 4
Cubist model parameters, descriptive statistics, and results of prediction models of pH.

pH (H2O) Descriptive analysis Observations Training set Validation set

Mean SD Min Max Total Train. Val. R2 RMSE RPIQ R2 RMSE RPIQ

National 5.4 0.7 0.0 8.9 26163 18314 7849 0.53 0.40 1.70 0.54 0.39 1.66

Regions South 4.7 0.5 3.8 6.5 328 229 99 0.35 0.44 1.42 0.34 0.47 1.19
Southeast 5.5 0.6 0.6 8.7 17001 11900 5101 0.49 0.42 1.83 0.49 0.42 1.83
Midwest 5.4 0.7 0.0 8.5 5947 4162 1785 0.51 0.45 1.82 0.52 0.43 1.84
Northeast 5.5 1.0 2.8 8.9 732 512 220 0.60 0.69 2.26 0.65 0.63 2.01
North 4.9 0.6 2.5 7.7 2155 1508 647 0.41 0.47 1.69 0.46 0.45 1.76

States AC - - - - - - - - - - - - -
AL 6.0 0.4 5.4 7.0 32 19 13 0.41 0.26 1.48 0.46 0.06 1.54
AM 4.6 0.5 3.2 7.1 501 350 151 0.35 0.43 1.73 0.43 0.41 1.41
AP - - - - - - - - - - - - -
BA 5.2 0.8 3.6 8.4 403 282 121 0.57 0.53 1.58 0.58 0.50 1.61
CE 5.7 1.2 3.0 8.3 33 19 14 0.73 0.62 1.23 0.97 0.45 1.31
ES - - - - - - - - - - - - -
GO 5.5 0.6 4.0 8.2 2050 1435 615 0.41 0.57 2.20 0.41 0.54 2.19
MA - - - - - - - - - - - - -
MG 5.1 0.7 3.0 8.3 1352 946 406 0.50 0.46 1.61 0.55 0.45 1.45
MS 5.3 0.7 0.0 8.5 3730 2611 1119 0.53 0.42 1.80 0.58 0.42 1.74
MT 5.6 0.6 3.8 7.4 167 116 51 0.31 0.72 1.69 0.45 0.66 1.79
PA 4.7 0.7 2.5 7.7 308 93 0.59 0.45 1.42 0.50 0.40 1.88
PB - - - - - - - - - - - - -
PE 5.1 0.9 3.9 8.2 69 41 28 0.62 0.32 1.49 0.97 0.20 0.72
PI 6.0 1.7 2.8 8.9 67 40 27 0.54 1.25 2.96 0.29 1.38 1.68
PR - - - - - - - - - - - - -
RJ - - - - - - - - - - - - -
RN - - - - - - - - - - - - -
RO 5.1 0.4 3.9 6.4 672 470 202 0.26 0.59 1.94 0.30 0.54 2.00
RR 4.9 0.6 3.5 7.6 627 438 189 0.53 0.22 1.38 0.55 0.15 1.32
RS 5.0 0.5 4.4 6.0 23 16 7 0.43 0.26 1.39 0.35 0.07 0.14
SC 4.7 0.4 3.8 6.5 305 213 92 0.29 0.62 1.40 0.30 0.57 1.33
SE - - - - - - - - - - - - -
SP 5.5 0.6 0.6 8.1 15547 10882 4665 0.47 0.42 1.90 0.48 0.44 1.89
TO - - - - - - - - - - - - -
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Of all soil attributes analyzed in this article, BS presented the
poorest result at the national level with R2 = 0.49 and RMSE = 17.01%
in validation mode (Table 6). However, at the regional level only the SE
region showed a R2 below 0.50 (R2 = 0.49 and RMSE = 16.28%) and
the NE showed the best performing BS model (R2 of 0.79 and
RMSE = 13.42%). At the state level, 16 models were generated, of
which 14 showed R2 above 0.65 and AM and GO states showed higher
R2 (0.70 and 0.69, respectively).

Higher errors in the calibration models than in validation are defi-
nitely odd, especially when the modeling process uses a machine
learning algorithm. In our case, this is related to a limited number of
samples for modeling at the state level. The SOC model predictions at
the state of AL (Table 1), for example, there were only 32 samples
available for calibration and 19 for validation, which resulted in a R2 of
0.29 (calibration) and 0.43 (validation). Conversely, prediction models
for SP state had a total of 8185 samples, 5729 for calibration and 2456
for validation. In this case, the R2 for calibration and validation were
practically the same (0.66). Representative and comprehensive datasets
are essential for a robust calibration, because otherwise the errors may
be high and results incoherent. The BSSL has been constantly populated
with new samples, therefore we believe that soon it will be possible to
calibrate good prediction models for all states and regions.

3.3. Synthesis of soil attributes prediction

In summary, we computed the best model performances (i.e.,
highest model fits and lowest errors) by down scaling results (i.e., from
national to state levels). For example, for SOC validation models the R2

were 0.78–0.84 - 0.93 (Table 1), for clay 0.88–0.94 - 0.96 (Table 2), and
for sand 0.87–0.94 - 0.95 for national and best performing regional and
state models, respectively (Table 3). However, the performance of state-
specific soil models differed widely due to multiple factors including
sample size, soil variance, and soil-forming factor differences. The
model performance for the same soil attribute in different states dif-
fered widely (e.g., R2 of clay varied from 0.42 to 0.96), hindered de-
tailed discussion on several factors which still need further studies. The
variability in statistical metrics of soil attributes assessments are not
new. Nocita et al. (2014) found several discrepancies in regard to R2 for
the same soil attribute, i.e., SOC, pH, and others. Zeng et al. (2016)
indicated that local predictions can be better modeled by understanding
the soil development, i.e., parent material, biome and land use.
Shepherd and Walsh (2002), obtained R2 for CEC from 0.6 (national
model) to 0.8 (local models). Grunwald et al. (2018) found that up-
scaled SOC spectral models performed better in terms of R2 and RPIQ,
whereas the downscaled models showed less bias and smaller RMSE in
Florida, USA. This study found no universal trend that could explain the
scalability of the models, such as spectral variance, soil attribute var-
iance, methods, and environmental characteristics or diversity.

Overall, SOC models with high model fit (R2 > 0.85 in regions CE,
MG, MT and SC) coincided with relatively high mean SOC of > 12
g kg−1irrespective of SOC variabilities that were very large (e.g.,
55.7 g kg−1 standard deviation, SD, in CE) or low (e.g., only
5.0 g kg−1SC in MT). Similar trends were discovered for soil texture
models. For example, clay models with high model fit (R2 > 0.85 in
regions ES, GO, MG, MS, RO, RS, SC and SP) corresponded with high
mean clay content of > 210 g kg−1, though almost all of these models

Table 5
Cubist model parameters, descriptive statistics, and results of prediction models of Cation Exchange Capacity (CEC).

CEC (cmolc kg-1) Descriptive analysis Observations Training set Validation set

Mean SD Min Max Total Train. Val. R2 RMSE RPIQ R2 RMSE RPIQ

National 47.7 41.9 0.0 958.0 17433 12203 5230 0.66 25.78 1.46 0.68 24.02 1.52

Regions South 12.6 5.9 1.3 35.7 631 442 189 0.60 3.72 1.77 0.64 3.81 1.83
Southeast 54.2 41.5 0.0 778.7 9896 6927 2969 0.75 21.64 1.63 0.79 20.02 1.73
Midwest 49.9 32.9 0.0 528.4 3974 2782 1192 0.77 16.06 2.35 0.75 17.29 2.11
Northeast 53.6 88.6 0.0 958.0 682 477 205 0.82 39.44 1.72 0.89 27.68 2.38
North 23.3 23.9 0.1 248.0 2250 1575 675 0.74 13.16 1.81 0.72 12.40 1.-

95

States AC - - - - - - - - - - - - -
AL 49.7 15.9 27.0 97.0 31 18 13 0.11 20.41 1.10 0.02 10.26 0.78
AM 22.0 35.8 1.0 248.0 501 351 150 0.91 11.75 0.56 0.84 14.92 0.45
AP 37.3 16.3 15.1 138.8 432 302 130 0.67 9.70 1.99 0.59 10.17 1.73
BA 33.5 39.6 0.0 224.0 403 282 121 0.79 19.42 3.08 0.77 19.30 3.01
CE 25.4 24.5 3.3 117.7 33 23 10 0.70 15.84 0.86 0.74 10.44 1.31
ES 85.5 28.0 44.7 183.5 100 70 30 0.35 22.94 1.58 0.29 25.23 1.10
GO 68.3 38.9 3.2 454.8 606 424 182 0.72 23.32 1.71 0.72 17.14 2.34
MA - - - - - - - - - - - - -
MG 66.9 45.1 0.5 778.7 1745 1222 524 0.68 26.71 1.92 0.67 24.77 1.81
MS 49.0 30.2 10.1 528.4 3101 2171 930 0.79 13.99 2.50 0.76 14.85 2.32
MT 18.5 19.3 0.0 75.0 267 187 80 0.97 3.16 12.04 0.93 5.39 6.82
PA 15.6 22.7 1.4 183.2 302 211 91 0.45 20.01 0.50 0.26 17.87 0.50
PB - - - - - - - - - - - - -
PE 6.8 2.6 2.7 17.3 69 48 21 0.25 1.95 1.48 0.16 2.71 1.36
PI 199.8 177.4 17.1 958.0 48 24 24 0.53 88.89 2.37 0.53 211.64 0.95
PR - - - - - - - - - - - - -
RJ 16.6 8.6 7.4 32.9 12 6 6 0.27 10.41 0.50 0.56 6.94 2.07
RN 36.6 35.0 1.9 102.2 25 13 12 0.95 7.35 5.40 0.99 5.11 11.48
RO 29.8 13.1 8.1 102.1 638 447 191 0.69 7.30 1.96 0.65 8.06 1.90
RR 4.5 2.6 0.1 24.0 377 264 113 0.40 1.91 1.41 0.36 2.64 1.11
RS 13.5 7.2 1.3 35.7 326 228 98 0.55 5.14 1.66 0.50 4.63 1.72
SC 11.6 4.0 3.8 24.5 305 214 92 0.63 2.43 2.53 0.65 2.32 2.34
SE 142.4 142.1 23.0 627.4 65 45 20 0.93 41.99 1.23 0.94 37.78 5.30
SP 51.0 40.1 0.0 564.0 8039 5627 2412 0.82 18.67 1.50 0.79 17.65 1.50
TO - - - - - - - - - - - -
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covered a wide range in clay contents with SD values ranging from 130
to 253 g kg−1. Trends among pH, CEC, and BS models were less clear
among regions in terms of underlying factors to explain model perfor-
mance. The model performance in this study showed comparable re-
sults with other spectral library studies (Viscarra Rossel et al., 2016)
This suggest that soil spectral models for key indicators on Brazilian
soils could be developed with similar quality as documented in other
soil spectral studies.

Samples from certain states showed high pedological variation
(factors and processes of soil formation). States with pedological com-
plexity and/or less sample size may have contributed to lower model
fits and higher errors than more homogeneous and/or more densely
sampled states. Though high sample size may not necessarily mean
better model performance as indicated by models in SP, which per-
formed excellent for clay, sand, and CEC, moderately for SOC, and less
well for pH and BS.

In order to confirm the effectiveness of the spectroscopic method to
determine clay and sand contents, the textural triangle was produced
showing simultaneously the observed values derived from traditional
laboratory analysis and the predicted ones by the spectroscopic method
(Fig. 6). The textural triangle of the entire BSSL (Fig. 6a) showed that
most soil samples were placed in the soil texture classes of sand, loamy
sand, sandy loam, sandy clay loam, sandy clay, and clay. The SE region
showed similar trends in soil texture when compared to the whole BSSL
database because the SE region contributed 52% of the total samples
with textural data (Fig. 6b). However, the samples of SE showed lower
silt content than the entire BSSL collection. The predicted soil textures
for the S region (Fig. 6c) N region (Fig. 6e), and NE region (Fig. 6f)
showed more scatter than the MW region (Fig. 6d). In the S region, most
soils belong to clay textural class followed by silt clay and clay loam

mainly due to the parent material predominantly formed by igneous
rocks (Fig. 2c). The samples with the highest silt contents belong to the
S region. This is related to the low temperature in this region on soil
formation. In the MW region, the prediction model for clay and sand
was the most accurate and this is reflected in the predicted samples,
which presented the same trend as the observed ones (Fig. 6d). The vast
majority of samples present a soil textural class varying from sand to
clay. The percentage of silt in these soils is low. In general, the MW
region presents more weathered-leached soils such as Ferralsols, de-
rived from sedimentary and igneous rocks forming loamy sand and
clayey soils. Soils from the N region showed a large variation in texture
(Fig. 6e) corroborating the lower prediction performance of clay
(Table 2) and sand content (Table 3) compared to other models. The NE
region present a large amount of sandy soils and for this reason the
predicted model had good performance (Fig. 6f). In the NE region, the
majority of the soils in this study is formed from sedimentary materials,
which is showed by the textural classes with high sand content (Fig. 6f).

The textural variations found in the triangles of each region are due
to differences in the geology, climate, and relief. Each region presents
textural diversity as there is also a great variation of types of soils
(Fig. 2e). It is important to emphasize that the predicted samples had
the same tendency of the observed ones. This is a great finding con-
sidering the world demand for soil analyses with > 600 million soil
samples processed every year which represents a consumption of about
840 thousand kg of dichromate and ammonium ferrous sulfate and 3
million L of sulfuric acid, just for SOC analysis (Demattê et al., 2019).
The effectiveness of soil spectroscopic analysis is justified by the fact
that it is fast, simple, accurate, cheap, and most importantly non-pol-
luting method. The possibility of predicting several attributes with just
one spectral reading, the easy and rapid data acquisition of large

Table 6
Cubist model parameters, descriptive statistics, and results of prediction models of Base Saturation (BS).

BS (%) Descriptive analysis Observations Training set Validation set

Mean SD Min Max Total Train. Val. R2 RMSE RPIQ R2 RMSE RPIQ

Nacional 39.6 23.6 0.0 100.0 28450 19915 8535 0.50 16.93 2.39 0.49 17.01 2.40

Regions South 44.4 22.9 1.7 89.7 326 228 98 0.56 15.26 2.55 0.54 15.51 2.60
Southeast 44.9 22.4 0.0 100.0 16981 11887 5094 0.48 16.33 2.20 0.49 16.28 2.24
Midwest 31.4 21.9 1.0 99.0 7404 5183 2221 0.58 14.62 2.28 0.57 14.72 2.32
Northeast 37.9 29.3 1.4 100.0 636 445 191 0.81 12.93 3.47 0.79 13.42 3.20
North 29.8 24.1 0.0 100.0 3103 2172 931 0.70 13.42 2.72 0.69 13.93 2.70

States AC - - - - - - - - - - - - -
AL 41.4 18.1 16.0 74.0 32 19 13 0.14 17.16 1.51 0.33 15.40 2.11
AM 19.0 14.2 1.0 100.0 501 351 150 0.47 9.29 1.29 0.70 9.91 1.41
AP 40.7 27.2 0.0 88.0 1249 874 375 0.71 14.75 3.53 0.63 16.63 3.10
BA 23.1 17.8 1.4 94.4 402 281 121 0.53 12.44 1.72 0.57 12.33 1.70
CE 86.0 11.1 52.0 100.0 33 23 10 0.69 6.76 1.26 0.60 8.07 0.93
ES - - - - - - - - - - - - -
GO 29.8 24.6 1.0 99.2 2132 1492 640 0.70 13.65 3.01 0.69 13.40 2.87
MA - - - - - - - - - - - - -
MG 30.2 23.3 0.0 100.0 1745 1222 524 0.57 16.75 2.12 0.55 16.96 2.02
MS 31.5 20.5 2.0 97.0 5122 3585 1537 0.58 13.73 2.24 0.43 15.98 1.92
MT 50.3 18.8 9.0 96.0 150 105 45 0.58 11.89 1.77 0.38 16.01 1.12
PA 26.8 21.1 0.0 95.5 302 211 91 0.54 14.81 1.73 0.52 15.00 1.75
PB - - - - - - - - - - - - -
PE 41.4 22.0 9.0 100.0 69 48 21 0.59 14.22 1.93 0.28 19.56 1.28
PI 76.9 20.4 25.0 100.0 67 47 20 0.57 12.37 1.88 0.37 18.68 1.49
PR - - - - - - - - - - - - -
RJ - - - - - - - - - - - - -
RN - - - - - - - - - - - - -
RO 15.0 8.6 2.0 63.0 642 449 193 0.46 6.76 1.63 0.45 6.25 1.28
RR 38.1 22.8 1.1 100.0 377 264 113 0.55 16.13 2.10 0.39 17.88 2.07
RS 44.4 22.9 1.7 89.7 326 228 98 0.69 13.13 3.02 0.35 18.61 2.11
SC - - - - - - - - - - - - -
SE - - - - - - - - - - - - -
SP 46.8 21.6 0.0 99.8 15124 10587 4537 0.52 15.36 2.22 0.33 17.69 1.97
TO - - - - - - - - - - - - -

J.A.M. Demattê, et al. Geoderma 354 (2019) 113793

14



amounts of samples without using environmentally hazardous chemi-
cals are the major advantages of the Vis-NIR-SWIR spectroscopy tech-
nique for soil analysis (Minasny and McBratney, 2008; Viscarra Rossel
and Behrens, 2010).

3.4. Spectral classification

In order to categorize how many spectral patterns are required to
represent Brazilian soils according to the shape of the 39,284 spectral
signatures, the first three principal component scores (Fig. 7a) were
used as variables in the cluster analysis (Terra et al., 2015). The ei-
genvectors of PC1 are dominated by positive loadings along the wa-
velengths, which captured 64% of the total variance. The high positive

loadings were found in the visible region that showed the characteristic
absorptions for iron oxides (Fig. 7a). The eigenvector of the PC2 (10%)
showed high negative loadings near at wavelengths for the character-
istic absorptions of 2:1 clay mineral (illite and smectite) and possibly
organic matter. The PC3 (7.6%) fluctuated between positive and ne-
gative loadings.

In order to reduce the dimensionality of the data, the first three
principal component scores (Fig. 7a), were applied to determine the
optimal number of clusters. We selected six clusters (classes) because,
since the pE was maximized and the pC was minimized when six
clusters were obtained (Table 7), which was then selected to represent
the most satisfactory cluster for the data. In the crisp clustering, each
observation receives membership values of 0 or 1 for each cluster. In

Fig. 6. Soil texture triangle calculated from the entire database (a) and for Brazilian regions, (b) Southeast (SE), (c) South (S), (d) Midwest (MW), (e) North (N), and
(f) Northeast (NE) regions. Cl: clay; SiCl: silty clay; SaCl: sandy clay; ClLo: clay loam; SiClLo: silty clay loam; SaClLo: sandy clay loam; Lo: loam; SiLo: silty loam; SaLo:
sandy loam; Si: silt; LoSa: loamy sand; and Sa: sand.
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the scatter diagram it shows the distribution of all observations colored
in the 6 crisp classes (Fig. 7b).

The average CR spectra of 6 classes is presented in Fig. 8. The
average spectrum of classes 1, 4, and 5 (Fig. 8a, g, i) were characterized
by absorptions representative of soils with abundant iron oxides (400 to

600 nm), while the classes 2, 3, and 6 (Fig. 8c, e, l). Although fairly
similar, class 4 may be differentiated from 1 and 5 classes by the ab-
sorption features at 500 and 900 nm. The spectrum from class 4
(Fig. 8g) presented features less pronounced than the other two (Fig. 8a,
i). These features were related to the crystal field electronic effect of
hematite mineral and consequently to the ferric ion (Fe+3) observed in
such iron oxides. The interaction between electromagnetic energy and
hematite results in electronic transitions, creating the absorption fea-
tures centered at 530 and 885 nm. Spectra from classes 1 and 5 can be
distinguished from each other by the CR reflectance factor at the SWIR-
1 range (1000–1800 nm), whereas class 5 presented a lower CR factor.
Fuzzy class 2 can be distinguished from the others by the lower CR
factor of features centered at 1200, 1900 and 2200 nm. Finally, class 3
spectrum has high CR factor between 350 and 750 nm, which is related
to low content of iron oxides in soils.

In the fuzzy-c-means clustering, each data point can belong to more
than one cluster. The probability of each soil sample being classified in
the fuzzy membership class 1 is shown in Fig. 8b. In the center of the
fuzzy membership class 1 are the samples with high probability of
pertaining to this class (red color). The same analogy applies to the
other five classes. These findings suggest that six types of spectra

Fig. 7. Principal components eigenvectors of PC 1, 2, and 3, (a) and crisp fuzzy-c-means classification, considering six groups (b). Principal components analysis was
performed with the continuum removed spectra. Sampling points clustering was based on PC scores.

Table 7
Fuzzy validation indices for the optimum number of clusters, the partition
entropy (pE), and the partition coefficient (pC).

Number of clustersa pE pC

3 0.57 0.68
4 0.63 0.68
5 0.71 0.65
6 1.06 0.48
7 0.86 0.61
8 0.91 0.60
9 0.97 0.58
10 1.04 0.55
11 1.11 0.53
12 1.05 0.56

a In bold is the optimal number of clusters.
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represent the whole population of Brazilian soils. The six classes of
spectra were discriminated according to the spectral pattern of soils,
which is directly linked to intrinsic heterogeneous characteristics,
where by contents of SOC, iron oxides, mineralogy of the clay fraction,
particle size distribution, and moisture, are the ones that most influence
the spectral responses.

Stoner and Baumgardner (1981) found five spectral classes in a
large database of the U.S. and Brazil. The authors suggested that five

soil spectral reflectance curves could be distinguished as sharing in
common certain differentiating characteristics concerning mainly the
organic matter and iron oxide contents. One of the classes was detected
because it had its origin in Brazil (Paraná state). Formaggio et al.
(1996) identified four patterns of spectral curves according to the shape
and intensity of the parameters in one state (São Paulo) in Brazil.
Viscarra Rossel et al. (2016), used a global spectral library to char-
acterize the world's soil and found six classes of spectra. The authors

Fig. 8. The average continuum removed spectrum of each fuzzy cluster (a, c, e, g, i, and l) and fuzzy membership values for the 6 clusters (b, d, f, h, j, and m).
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also stated that grouping the spectra into more homogeneous spectral
classes can improved the modeling by removing bias in the predictions.
Terra et al. (2018) found 6 different patterns of soil spectra based on
differences in reflectance intensity and absorption features caused by
weathering intensification, which enabled to distinguish soil samples
regarding similarity of particle size distribution, mineralogy, and some
chemical properties.

From the six classes defined by crisp fuzzy (Crisp-1 to Crisp-6),
Crisp-4 presents the largest number of samples (9893 samples), closely
followed by Crisp-1 (9530 samples) (Fig. 9). Most of the samples in
fuzzy c-means classes (FMD-1 to FMD-6) were correctly assigned to the
correspondent crisp classes. More than half of FMD-1 samples were
classified as Crisp-1 (Fig. 9), another part was misclassified as Crisp-4
and Crisp-5, while few ones were defined as Crisp-2, Crisp-3, and Crisp-
6. This suggests that Crisp-1, 4, and 5 are related to each other, which is
corroborated by the similarity in CR spectra of these classes (Fig. 8a, g,
i). In FMD-2, the dominant misclassified classes were Crisp-3 and Crisp-
6 (Fig. 9). Most of FMD-3 individuals were correctly assigned as Crisp-3,
with few samples misclassified as Crisp-2 and Crisp-6. FMD-4 showed
higher misclassification with Crisp-1, followed by Crisp-6. As expected,
FMD-5 was mostly misclassified as Crisp-1 and Crisp-4, confirming the
correlation between their spectral pattern. Finally, FMD-6 was mainly
misclassified as Crisp-4, demonstrating the similarity between the

spectra of these classes (Fig. 8g, l).

3.5. Correspondence analysis

The CA analysis showed that spectral classes 1 and 5 were corre-
lated with the MW region, while class 4 was similar with region SE,
class 6 with region S, class 2 with region N, and class 3 with region NE
(Fig. 10a). The spectral classes 5, 1, 4, and 6 resemble MS, SP, PR, GO,
MA, RS, RJ, MT, and PB states, that is the points are very close in the
simultaneous plot of row and column coordinates (Fig. 10b). The
spectral class 3 showed proximity with AL, RN, AM, ES, BA, and PE
with most of them from regions N and NE. The spectral class 2 showed
some similarity with AP, RO, RR, PA, and AC states. The sedimentary
rocks were highly associated with spectral class 1, metamorphic rocks
were correlated with classes 2 and 3, and igneous rocks with classes 5
and 6 (Fig. 10c). For the CA between spectral classes and biomes
(Fig. 10d), the classes 1, 4, and 6 were related with Atlantic Forest
biome, class 5 with Cerrado, class 3 with Pampa, Pantanal and Caa-
tinga, and class 2 with Amazon. For the CA of spectral and soil classes
only profile samples that have layer B collected were used. The Gleysols
and Plinthosols classes were associated with spectral class 2, Ferralsol
was highly associated to classes 1, 4 and 5 (Fig. 10e). Nitosols and
Lixisols were associated with class 6, and Cambisols with class 3. His-
tosols, Arenosols, Podzols, Planosols, and Vertisols were not associated
with any particular spectral class but it is worth mentioning that they
were closer to class 3. The CA of spectral classes and soil layers showed
that classes 6 and 3 were correlated with A layer (Fig. 10f). The B layer
showed some association with spectral classes 2, 4, and 5 (Fig. 10f),
which is corroborated by the fact that spectral classes 4 and 5 showed
similarity in CR spectrum (Fig. 8g, i). The C layer was strongly asso-
ciated with class 1. It is also important to mention that the spectral class
4 was in the middle of layers A and B, and spectral class 5 was in the
middle of layers B and C. The D layer presented low association with
classes (Fig. 10f).

4. Conclusions

The BSSL provided strong evidence to be a useful tool to estimate
soil attributes such as clay, sand, SOC, CEC, pH, and BS, with variable
results. There were differences among models considering national (for
all Brazil), regional and state scales. The results were coherent for clay,
sand, SOC, and CEC. The attributes with low content in soils are more
prone to show high inaccuracy and need further evaluations, such as
chemical ones (Ca, K, P, others). In general, spectral signatures also had
great relationship with soil mineralogy. Cluster analysis showed that
Brazil has six classes of spectral signatures among the studied popula-
tion and there were clear differences among spectra developed in dif-
ferent geographic (i.e., states) and environmental locations (i.e.,
geology). The results endorse the importance and relevance of spectral
libraries for soil evaluation in support on its quantification, quality and
classification. The large spectral database, will be enhanced at scales
that meet the users' needs for soil mapping in Brazil. The use of sensors
and geotechnologies, allows a higher sample throughput and denser
sampling. Both can generate data for soil survey and mapping that will
assist in the sustainable management of agriculture and forest systems.
We believe that soil spectroscopy in Brazil is on the right track, because
it is a fast, simple, accurate and most importantly non-pollutant
method. In addition, a strong collaborative network and infrastructure
has been formed that supports the expansion of soil spectral soil map-
ping. With the approval of Brazil's National Soils Program (PronaSolos),
which is promising in relation to the mapping of Brazilian soils, we
hope that techniques such as soil spectroscopy can be applied.

Besides the importance of spectral standardization, spectral libraries

Fig. 9. Sankey diagram showing the relative associations between crisp and
Fuzzy Membership Degree (FMD) for each class.
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Fig. 10. Ordination diagrams from the correspondence analysis (CA) between the 6 spectral classes and Brazilian regions (a), states (b), geology (c), biomes (d), soil
classes (only profile samples that have layer B were used) (e), and layers (f).
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must be accompanied by chemical and physical characterization of soil
attributes. Depending on the volume of soil samples, the standard
procedures applied to spectral measurements can be complex and time-
consuming. Despite the spectral variation can also be an issue to be
faced, the incorporation of soil chemical and physical data is crucial.
The spectral acquisition is no more an obstacle to the organization of
spectral libraries but the collection of reliable and consistent soil che-
mical and physical data poses challenges. Soil spectral information is
dependent on wet analysis. In some cases, the soil sample collection and
wet chemical/physical analyses were conceived before the BSSL in-
itiative. Therefore, standardized collection and analyses of samples
were not possible in all circumstances. We agreed that it can create a
margin of error in both calibration and validation processes, but the
novelty of this database and the difficulty to gather information must be
taken into consideration. Furthermore, having a SSL that represent
Brazilian soils is just as important as defining the degree of uncertainty.
Therefore, in the first stage of the SSL's development we decided to
include samples from many wet chemistry and physical laboratories.

The results are a first step towards the establishment of the BSSL.
The database is being continuously increased with new information,
consequently increasing its representativeness along the Brazilian ter-
ritory. Improvements in the frame-work have been conduced, including
computational routines implementing sophisticated statistical proce-
dures, which will reduce the uncertainties in the calibration procedure.
Among them, data will be filtered and standardized with wavelets,
which will help to account for the inconsistencies in sample prepara-
tion, different measurement protocols and instruments that were used.
In parallel, different machine learning algorithms have been evaluated,
aiming to define the most suitable data mining method for our dataset.
These mining procedures account for local relationships in the data
providing to the models a wide usability at different spatial scales
(local, regional and national). We also developed an interactive online
platform to disseminate the use of spectroscopy in soil science, and to
interact with the database administrators. The soil dataset and their
contributors can be accessed at < https://bibliotecaespectral.wixsite.
com/esalq > . By increasing the number of users, the data available and
knowledge will also increase and consequently the BSSL will be con-
stantly improved to represent the variability of Brazilian soils. We have
to keep in mind that the importance of spectra is not only concentrated
on chemical agriculture information (i.e., Ca, Mg, K, others). From one
measurement, we can achieve chemical, physical and mineralogical
information, which are also important for soil mapping and agriculture
as well. Finally, in our vision, wet analysis is an important method and
now has the great opportunity to merge knowledge (and aggregate
information) with proximal sensing, to evolve on soil analysis to a new
generation and its benefits.
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